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Abstract 

Real-time search methods allow an agent to perform path-
finding tasks in unknown environments. Some of these 
methods may plan several actions per planning step. We 
present a novel approach, where the number of planned 
actions per step depends on the quality of the heuristic 
values found in the lookahead. If, after inspecting the 
neighborhood of a state, its heuristic value changes, only 
one action is planned. When the heuristic values of all states 
in the lookahead do not change, several actions are planned. 
We provide experimental evidence of the benefits of this 
approach, with respect to other real-time algorithms, on 
existing benchmarks. 

Introduction   

Let us consider an agent who has to perform a path-finding 
task from a start position to a goal position in an 
environment that is initially unknown. The agent can only 
sense the surrounding area that is in range of its sensors. In 
addition, it remembers those areas that it has visited 
previously. An example of this task appears in Figure 1. 
This situation may happen in characters of real-time 
computer games (Bulitko & Lee 2006) and control in 
robotics (Koenig 2001). Off-line search methods, like A* 
(Hart, Nilsson, & Raphael 1968) are not appropriate for 
these tasks, because they require knowing the terrain in 
advance. Incremental versions of A*, like D*Lite (Koenig 
& Likhachev 2002), and real-time search methods (Korf 
1990) allow an agent to solve this task, but of these two, 
only  real-time search methods can perform the planning 
phase in a limited, short amount of time (a comparison 
between incremental versions of A* and real-time heuristic 
search appears in (Koenig 2004)).  
 Real-time search interleaves planning and action 
execution phases in an on-line manner. In the planning 
phase the agent plans one or several actions, which are 
performed in the action execution phase. Real-time 
methods restrict the search to a small part of the state space 
that is around the current state. This part is called the local 
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space. The size of the local space is small and independent 
of the size of the complete state space, so that searching in 
the local space is feasible in the limited time of the 
planning phase. As a result, the agent determines how to 
move inside the local space and plans one or several 
actions, which are performed in the next action execution 
phase. The whole process iterates with new planning and 
action execution phases until a goal state is reached. 
 At each step, this strategy computes the beginning of the 
trajectory from the current state to a goal state. Since 
search is limited to a small portion of the state space, there 
is no guarantee to produce an optimal global trajectory. 
However, some methods guarantee that after repeated 
executions on the same problem instance, the trajectory 
converges to an optimal path. To prevent cycling, real-time 
methods update the heuristic values associated with visited 
states.  
 Initially, real-time search algorithms planned one action 
per planning step (Korf 1990). Nowadays, several actions 
can be planned at each planning step, actions that are 
sequentially performed after it (Koenig 2004), (Koenig & 
Likhachev 2006), (Bulitko & Lee 2006). 
 There is some debate about the relative performance of 
planning one single action versus planning several actions 
per planning step, with the same amount of lookahead. If a 
single action is planned, the resulting action will probably 
be of greater quality than if several actions were planned. 
This may decrease the cost of the final solution. However, 
planning one action per step often increases the overall 
CPU time devoted to planning. In this paper we present an 
alternative approach: to take into account the quality of the 
heuristic found during lookahead. If we find any evidence 
that the heuristic is not accurate, we suggest taking a 
conservative approach planning one action only. 

Start Start Start

Goal Goal Goal

Figure 1: An example of path-finding task: (i) the exact map 

(ii) what the agent, represented by a dot, knows at the 

beginning (iii) after some steps, the agents knows more about 

the exact map, which is partially revealed. 



 

Otherwise, we propose to take a more risky approach, 
planning of several actions in this step. In addition, if any 
inaccuracy is detected during lookahead, it is repaired even 
though the inaccuracy is not located at the current state. 
 The structure of the paper is as follows. First, we define 
precisely the problem and summarize some of the most 
popular approaches to solve it. Then, we present our 
approach, showing how the quality of the heuristic has to 
be taken into account when performing lookahead. We 
implement these ideas in the LRTA*(k, d) algorithm, and 
we present experimental results comparing this approach 
and existing algorithms. Finally, we present conclusions 
from this work, and address issues for further research. 

Problem Definition  

 The state space is defined as (X, A, c, s, G), where (X, A) 
is a finite graph, c : A → [0,∞) is a cost function that 
associates each arc with a positive finite cost, s ∈ X is the 
start state, and G ⊂ X is a set of goal states. X is a finite set 
of states, and A ⊂ X × X \ {(x, x)}, where x ∈ X, is a finite 
set of arcs. Each arc (v, w) represents an action whose 
execution causes the agent to move from state v to state w. 
The state space is undirected: for any action (x, y) ∈ A 
there exists its inverse (y, x) ∈ A with the same cost c(x, y) 
= c(y, x). The cost of the path between state n and m is k(n, 
m). The successors of a state x are Succ(x) = {y|(x, y) ∈ A}. 
A heuristic function h : X → [0, ∞) associates to each state 
x an approximation h(x) of the cost of a path from x to a 
goal g where h(g) = 0 and g∈ G. The exact cost h*(x) is the 
minimum cost to go from x to any goal. h is admissible iff 
∀ x ∈ X, h(x) ≤ h*(x). h is consistent iff 0 ≤ h(x) ≤ c(x,w) + 
h(w) for all states w ∈ Succ(x). A path {x0, x1,.., xn} with 
h(xi) = h*(xi), 0 ≤  i ≤ n is optimal. 
 LRTA* is a real-time search algorithm that performs a 
loop of lookahead, update and action execution, until a 
goal node is found. If x is the current state, it performs 
lookahead at depth 1, computing y = arg minz∈Succ(x)c(x, z) + 
h(z) (lookahead at greater depths can also be computed, 
this is the simplest version). If h(x) < c(x, y) + h(y) (we call 
it the updating condition), LRTA* updates h(x) to c(x, y) + 
h(y) and moves to the state y. In a state space like the one 
assumed here (finite, minimum positive costs, finite 
heuristic estimates) where from every state there is a path 
to a goal, it has been proved that LRTA* is complete. In 
addition, if h is admissible, over repeated trials (where 
each trial takes as input the heuristic values computed in 
the previous trial), the heuristic estimates eventually 
converge to their exact values along every optimal path 
(with random tie-breaking) (Korf 1990). 

Related Work  

In RTA* / LRTA* (Korf 1990), the merit of a state x is f(x) 
= g(x) + h(x), where g(x) is the distance from the current 
state to x (in contrast with A*, where g(x) is the distance 
from the initial node to x). Both algorithms were initially 

presented performing one move per step, but it can be 
easily modified to compute d moves per step, by expanding 
d levels of the search tree rooted at the current state. RTA* 
/ LRTA* updates the heuristic of the current state with the 
2nd min / 1st min of f at depth d. After updating, it 
executes d moves to the best state of the frontier (state with 
minimum f at depth d). 
 The LRTA* version of (Koenig 2004) searches the local 
space around the current state using the A* algorithm. It 
uses a parameter k that limits the number of states that 
enter the CLOSED list. When this limit is achieved, all 
nodes in CLOSED are updated using a shortest path 
algorithm. After updating, the agent performs several 
moves to reach the first node in the OPEN list. The 
RTAA* algorithm (Koenig & Likhachev 2006) follows a 
similar strategy with a different updating mechanism, 
which is simpler but less informed than the one used in the 
LRTA* version of (Koenig 2004). 
 The LRTS algorithm (Bulitko & Lee 2006) also 
computes d moves. As in the previous case, it expands d 
levels of the search tree, but the updating process is 
different. LRTS updates the current state with the 
maximum value among the states with minimum f at each 
depth between 1 and d. After updating, the agent performs 
d moves to the state with minimum f at depth d.  
 The LRTA*LS(k) of (Hernandez & Meseguer 2007) 
plans a single action per step. If the heuristic of the current 
state changes, it propagates this change in the local space 
computed by a special procedure and composed up to k 
states. 
 In unknown environments, moves are computed using 
the “free space assumption”: if a state is not in the 
visibility range of the agent and there is no evidence that  it 
contains an obstacle, it is assumed to be feasible. When 
moves are performed, if an obstacle is found in one of 
these assumed feasible states, the execution stops and a 
new planning phase starts. 

Several Moves per Step 

As mentioned above, there is some debate around the 
adequacy of planning one action versus planning several 
actions per planning step, with the same amount of 
lookahead. Typically, single-action planning produces 
trajectories of better quality (that is, minor cost). However, 
the overall CPU time devoted to planning in single-action 
planning is usually longer than in the other approach, since 
the whole effort of lookahead produces a single move. 
Thus, planning several actions is an attractive option that 
has been investigated in different settings (Koenig 2004), 
(Bulitko & Lee 2006). 
 Planning a single action per step is a conservative 
strategy. The agent has searched the local space and has 
found the best trajectory in it. But, from a global 
perspective, the agent is unsure whether this best trajectory 
effectively brings the agent closer to a goal state, or if it 
follows a wrong path moving closer to an obstacle barrier 
(if the path is finally wrong this will become apparent after 
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some moves, when more parts of the map are revealed). In 
this situation, the least commitment strategy is to plan a 
single action: the best move from the current state. 
 Planning several actions per step can be seen as a risky 
strategy, for the same reasons. Since the local space is 
small with respect to the whole state space, it is unclear if 
the best trajectory inside the local space is also good at a 
global level. Following the best trajectory in the local 
space is risky because (i) it might not be good at a global 
level, and (ii) if it is finally wrong, since it includes several 
actions, it will require some effort to come back. 
Otherwise, if the trajectory is good, performing several 
actions in one step will bring the agent closer to the goal 
than will performing a single move. 
 These strategies are two extremes of a continuum of 
possible planning strategies. We propose an intermediate 
position between them, which consists on taking into 
account the quality of the heuristic found during 
lookahead. If there is any evidence that the heuristic 
quality is not perfect at local level, we do not trust the 
heuristic values: we take a conservative approach and plan 
one action only. Otherwise, if the heuristic quality is 
perfect in the local space, we trust it, taking the more risky 
approach and planning for several actions. 
 Specifically, we propose not to trust the heuristic when 
one of the following conditions holds: 
1. the final state for the agent (= the best state in the 

frontier of the local space) satisfies the updating 
condition, 

2. there is a state in the local space that satisfies the 
updating condition. 

In both cases, we repair the inaccuracy of the heuristic, that 
is, we generate a local space around that state, we update 
the heuristic and propagate this change following the 
bounded propagation method (Hernandez & Meseguer 

2007). This is an important point in our approach: as soon 
as one heuristic inaccuracy is detected, it is repaired and 
propagated. 
An example of the proposed strategy appears in Figure 2. 
We present the first two planning and execution steps of an 
agent in one-dimensional space, where the cost of moving 
to a neighbor state is 1, states appear on the horizontal axis 
and heuristic values are shown on the vertical axis. This 
agent performs lookahead using A* until CLOSED has 5 
states, it updates heuristic values of states in CLOSED 
using a shortest path algorithm and it is able to plan up to 5 
actions per step. The single-action strategy  is shown on 
the left (graphics a, b and c). Initially in (a), the agent is in 
state l. It performs A* until CLOSED = {h, i, j, k, l}. The 
shortest path algorithm on CLOSED causes no change, and 
the best action is l → k (b). Then, the process repeats: A* 
executes until CLOSED = {g, h, i, j, k}, the shortest path 
algorithm causes the changes in heuristic values that 
appear in (c) and the agent plans the best action k → l 
(depending on tiebreaking, it could also be k → j). In the 
center graphs (d, e and f), the planning several actions per 
step strategy is shown. Initially in (d), the agent is in state 
l. It performs A* until CLOSED = {h, i, j, k, l}. The 
shortest path algorithm on CLOSED causes no change. 
Then, it plans five actions: l → k → j → i → h → g. So the 
agent moves finally to g (e) and the whole process repeats. 
It performs A* until CLOSED = {g, f, h, e, i}. The shortest 
path algorithm updates the heuristic values and the agent 
plans three actions: g → h → i → j (f) (it could also be g 
→ f → e → d). On the right hand graphs (g, h and i), we 
show our proposed scheme. Initially in (g), the agent is in 
state l. It performs A* until CLOSED = {h, i, j, k, l}. The 
shortest path algorithm on CLOSED causes no change. 
Then, we check if the final state where the agent is 
planning to move (state g) satisfies the updating condition. 

Figure 2: Example of moving strategies in real-time search for an agent, represented as a black dot, in unidimensional space. 

States are represented in the horizontal axis, while heuristic values appear in the vertical axis. The solution state is v. local 

space has 5 states, up to 5 actions can be planned per step. Left: single-move strategy. Center: several moves strategy. Right: 

the strategy proposed in this paper. 



 

Since h(g) is going to change, we select the local space (I, 
F) around g with 5 states I = {g, f, h, e, i} and F = {d, j}. 
We update I with the shortest path, obtaining the heuristic 
values of (e). Then, we plan a single action: l → k. The 
whole process repeats with the agent in k. A* stops when 
CLOSED = {j, k} because h(j) satisfies the change 
condition. The local space (I, F) around j with 5 states is I 
= {j, k, i, l, h} and F = {g, m}. The shortest path algorithm 
produces the changes reported in (i) and since a heuristic 
repair has been done, a single action is planned: k → l. 

LRTA*(k, d) 

The strategy explained in the previous section is 
implemented in the LRTA*(k, d) algorithm. It is a LRTA*-
based algorithm (Korf 1990), that propagates heuristic 
updates up to k states, following the bounded propagation 
idea of (Hernandez & Meseguer 2005) (Hernandez & 
Meseguer 2007). In addition, it is able to plan either 1 or 
up to d actions per planning step. It includes the following 
features: 
• Lookahead using A*. Following the idea of (Koenig 

2004), the lookahead required to plan more than one 
action per step is done using the well-known A* 
algorithm. 

• Local space selection. When the heuristic value of a 
state x in the lookahead changes, the local space (I, F) 
around x (where I is the set of interior states and F is 
the set of frontier states) is computed using the 
procedure presented in (Hernandez & Meseguer 2007). 

• Propagation in local space. Once the local space (I, F) 
is selected, propagation of heuristic changes into the 
local space is done using the Dijkstra shortest paths 
algorithm, as done by (Koenig 2004). 

 LRTA*(k, d) is more that a novel combination of 
existing techniques. As a new element, the algorithm 
determines the number of actions to plan depending on the 
quality of the heuristic found in the lookahead. If the 
heuristic value of some state satisfies the updating 
condition, this change is propagated up to k states and only 
one action is planned only. If no heuristic value satisfies 
the updating condition in the lookahead states, a sequence 
of d actions are planned. These actions are executed in the 
execution phase, taking into account that if an obstacle is 
found, the execution stops and a new planning phase starts. 
 LRTA*(k, d) appears in Figure 3. The central procedure 
is LRTA*(k,d)-trial, that is executed once per trial until 
solution is found (while loop, line 2). This procedure 
works at follows. First, it performs lookahead from the 
current state x using the A* algorithm (line 3). A* 
performs lookahead until (i) it finds an state whose 
heuristic value satisfies the updating condition, (ii) it finds 
a state w such that g(w) = d, or (iii) it finds a solution state. 
In any case, it returns the sequence of states, path, that 
starting with the current state x connects with (i) the state 
whose heuristic value satisfies the updating condition, (ii) a 
state w such that g(w) = d, or (iii) a solution state. Observe 
that said path has at least one state x, and that the only state 

that might change its heuristic value is last(path). If this 
state satisfies the updating condition (line 5), then this 
change is propagated: the local space is determined (line 6) 
and updated using the shortest path algorithm (line 7). 
Then, one action is planned (line 8), executed (line 9) and 
the loop iterates (line 10). If last(path) does not change its 
heuristic value, then up to d actions are planned and 
executed (lines 12-16).  
 Function SelectLS(k, d) computes the local space (I, F) 
around x that has at most k states in I. The set F surrounds I 
immediately and completely. This function works as 
follows. It keeps a queue Q of the state candidates to be 
included in I or F. Q is initialized with the current state x 

procedure LRTA*-LS(k) (X, A, c, s, G, k, d)  
1 for each x ∈ X do h(x) ← h0(x); 

2 repeat 
3  LRTA*(k,d)-trial(X, A, c, s, G, k, d); 
4 until h does not change; 

 

procedure LRTA*-LS-trial(X, A, c, s, G, k, d) 
1 x ← s; 

2 while x ∉ G do 

3  path ← A*(x, d, g); 

4  z ← last(path); 
5  if Changes?(z) then 
6   (I, F) ← SelectLS(z, k); 
7   Dijkstra(I, F); 
8   y ← argminv∈Succ(x) [h(v) + c(x, v)]; 

9   execute(a ∈ A such that a = (x, y)); 

10  x ← y; 

11 else 
12  x ← extract-first (path); 
13  while path ≠ ∅ k do 

14   y ← extract-first (path); 
15   execute(a ∈ A such that a = (x, y)); 

16   x ← y; 

 

procedure SelectLS (x, k): pair of sets; 
1 Q  ← 〈x〉; F  ← ∅; I ← ∅; cont ← 0; 

2 while Q ≠ ∅ ∧ cont < k do 
3  v ← extract-first(Q); 
4  y ← argminw∈Succ(v) ∧ w ∉ I h(w) + c(v, w); 

5  if  h(v) < h(y) + c(v, y)  then 

6   I ←I ∪ {v}; 

7   cont ← cont + 1; 

8   for each w ∈ Succ(v) do 

9    if w ∉ I ∧ w ∉ Q  then Q ← add-
last(Q,w);  
10  else if I ≠ ∅ then F ←F ∪ {v}; 

11 if Q ≠ ∅ then F ←F ∪ Q; 

12 return (I, F); 
 
function Changes? (x): boolean; 
1 y ← argminv∈Succ(x) [h(v) + c(x, v)]; 

2 if  h(x) < h(y) + c(x, y)  then return true; 
3 else return false; 

Figure 3: The LRTA*(k, d) algorithm. 



and I and F are empty (line 1). At most k states will enter 
in I, controlled by the counter cont. Then, a loop is 
executed until Q contains no elements or cont is equal to k 
(while loop, line 2). The first state v in Q is extracted (line 
3). The state y  ← arg minw∈Succ(v)∧w∉I [c(v, w) + h(w)] is 
computed (line 4). If state v is going to change (line 5), it 
enters I and the counter is incremented (lines 6-7). Those 
successors of v which are not in I or Q enter Q by the rear 
(lines 8-9). Otherwise, v enters F (line 10). When exiting 
the loop, if Q still contains states, these are added to F. 
 Function Changes?(x) returns true if x satisfies the 
updating condition. Otherwise, it returns false (lines 2-3).  
Since the heuristic always increases, LRTA(k,d) 
completeness is guaranteed (Theorem 1 of (Korf 1990) 
holds). If the heuristic is initially admissible, updating the 
local space with the shortest path algorithm keeps 
admissibility (Koenig 2004), so convergence to the optimal 
paths is guaranteed in the same terms as LRTA* (Theorem 
3 of (Korf 1990) holds). So LRTA(k, d) inherits the good 
properties of LRTA*. 
One might expect that LRTA*(k, d) collapses into 
LRTA*LS(k) when d = 1. However, this is not the case. 
When d = 1, these two algorithms basically differ in the 
following. If the heuristic of the current state satisfies the 
updating condition, LRTA*LS(k) updates it and propagates 
this change in a local space constructed around the current 
state. In this case, LRTA*(k, 1) behaves exactly like 
LRTA*LS(k). But if the heuristic of the current state does 
not change, LRTA*(k, 1) generates a local space using the 
A* algorithm, and if the heuristic of some state of this local 
space satisfies the updating condition, it is updated and this 
change is propagated in a local space around that state. 

Experimental Results  

We compare the performance of LRTA*(k, d) with LRTA* 
 (version of Koenig), RTAA* and LRTS(γ=1, T=∞). 
Parameter k is the size of the local space, where bounded 
propagation is performed; it is usually taken as the 
lookahead parameter for LRTA* and RTAA*. We have 
used the values k = 5, 10, 20, 40, 80. For LRTS, we have 
used the following values for the lookahead depth: 2, 3, 4, 
6 (corresponding to local spaces of size close to those 
generated by the four last k values). Parameter d is the 
upper limit on the number of planned actions per step for 
LRTA*(k, d). We have used the values d = 1, 2, 4, 6. 
 Benchmarks are 4-connected grids and five different 
maps modeled from a role-playing game (BioWare Corp. 
1998). For grids, we use Manhattan distance as the initial 
heuristic. We use the following grids: Grid35. Grids of 
size 301 × 301 with a 35% of obstacles placed randomly. 
Here, Manhattan distance tends to provide a reasonably 
good advice. Maze. Acyclic mazes of size 181 × 181 
whose corridor structure was generated with depth-first 
search. Here, Manhattan distance could be very 
misleading, because there are many blocking walls. The 
number of states in each computer game map is 2,765, 
7,637, 13,765, 14,098, and 16,142. The maps are 8-

connected worlds. We use the maximum of the absolute 
differences of the x and y coordinates of two cells as the 
initial heuristic. In all benchmarks, the starting and goal 
states are chosen randomly assuring that there is a path 
from the start to the goal. All actions have cost 1. The 
visibility radius of the agent is 1. Results consider the first 
trial and the convergence to optimal trajectories. We 
present the solution cost (= number of actions performed to 
reach the goal) and total search time (until the agent 
reaches the goal) in milliseconds, plotted against k, 
averaged over 1,500 different instances in grids, and over 
10,000 instances in maps (2,000 instances for each map). 
 LRTA*, RTAA* and LRTA*(k, d) results appear in 
Figure 4, while LRTS(γ=1, T=∞) results appear in Table 
1.They are not included in Figure 4 for clarity purposes. 
Solution costs are always worse than those provided by 
other algorithms and in some cases their inclusion caused 
to change the plot scale. From this point on, we limit the 
discussion to LRTA*, RTAA* and LRTA*(k, d). 
  Results for first-trial on Grid35 appear in the first row 
of Figure 4. We observe that the solution cost decreases 
monotonically as k increases, and for LRTA*(k, d) it also 
decreases monotonically as d increases. LRTA*(k, d) 
versions obtain the best results for low lookahead, and all 
algorithms have a very similar cost for high lookahead (for 
k = 80 LRTA* obtains the minimum cost, followed closely 
by RTAA* and LRTA*(80,6)). Considering total search 
time, RTAA* and LRTA* increase monotonically with k, 
something which does not occur for LRTA*(k, d). This 
algorithm (especially d = 1, 2 although the four d values 
have a similar behavior) starts at the same level as the 
other algorithms, decreases slightly with k and after k = 20, 
increases very slightly. Globally, it remains fairly stable. 
For medium and high lookahead, its total search time is 
much shorter than RTAA* and LRTA*. So, in the whole 
lookahead range, LRTA*(k, d) offers a very good 
performance in solution cost with a low (often the lowest) 
total search time.  
 Results for the first-trial on Maze appear in the second 
row of Figure 4. Regarding the solution cost, the pattern is 
similar to the observed in Grid35: it decreases 
monotonically as k increases, LRTA*(k, d) versions obtain 
lower costs than RTAA* and LRTA* (except for k = 5 and 
d = 1) and their costs decrease as d increases. All 
algorithms have a similar cost with k = 80 (LRTA*(80, 2) 
reaches the minimum cost, followed by LRTA*(80, 4) and 
LRTA*(80, 1)). Regarding total search time, the pattern is 
different from Grid35. All algorithms (except LRTA(5, 1)) 
require a similar time for k = 5. Then, the time required by 
all algorithms decreases as k increases until some k value 
where the time increases again. The interesting point is that 
LRTA* and RTAA* start increasing for a relatively low 
lookahead (k = 10, 20) while LRTA(k, d) starts increasing 
for larger lookahead (k = 40). In addition, this increment is 
very low. As a result, all versions of LRTA*(k, d) offer the 
shortest search times for medium to high lookahead. 
Again, in the whole range of lookahead, LRTA*(k, d) 



 
 

Figure 4: Experimental results on Grid35, Maze and game maps. We present solution cost and total search time for the first trial. 
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offers a very good performance in solution cost with a low 
(often the lowest) total search time. 
 Results for the first-trial on computer game maps appear 
in the third row of Figure 4. Regarding the solution cost 
and total search time, the pattern is similar to the observed 
in Grids: the cost  decreases monotonically as k increases 
and LRTA*(k, d) versions obtain lower costs than RTAA* 
and LRTA*. The total search time required by all 
algorithms decreases as k increases until some k value 
where the time increases again. LRTA* starts increasing 
for relatively low lookahead (k = 10) while RTAA* and 
LRTA*(k, d) starts increasing for intermediate values of 
lookahead (k = 40). 

Results for convergence on Grid35 appear in the first 
row of Figure 5. Solution cost results are similar to the first 
trial on the same benchmark. Regarding total search time, 
the decreasing-increasing curve observed in the Maze 
benchmark appears for LRTA* (inflexion point at k = 20) 
and RTAA* (inflexion point at k = 40). Interestingly, 
LRTA*(k, d) versions keep decreasing. So here LRTA*(k, 
d) obtains the minimum cost and the shortest search time at 
the maximum lookahead tested (k = 80). Differences 
among d values are small.  
 Results for convergence on Maze appear in the second 
row of Figure 5. For the solution cost, the pattern already 
observed in the previous experiments is repeated here. 



Regarding total search time, all algorithms show a similar 
behavior: for each k value, all have similar time 
requirements, which decrease monotonically as k increases. 
Therefore, for low lookahead LRTA*(k, d) offers the 
minimum cost, while there is little difference for high 
lookahead. 
Results for convergence on computer game maps appear in 
the third row of Figure 5. For the solution cost, the pattern 
already observed in the previous experiments is repeated 
here. Regarding total search time, the decreasing-
increasing curve observed in the Maze benchmark appears 
for LRTA* (inflexion point at k = 40). Interestingly, 
LRTA*(k, d) versions and RTAA* keep decreasing. 

Summarizing, there is a common pattern in solution 
cost: all algorithms improve as lookahead increases, for 

low and medium lookahead LRTA*(k, d) versions offer the 
best cost, while for high lookahead all algorithm achieve a 
similar cost. Regarding the total search time, we observe 
some differences. Considering four experiments (first trial 
in Grid35, Maze and computer game maps, convergence in 
Grid35) all algorithms require a similar time for low 
lookahead. This time increases drastically for RTAA* 
(except in computer game maps) and LRTA* for high 
lookahead, while it remains much lower for LRTA*(k, d). 
Regarding convergence in Maze and computer game maps,  
for all values of lookahead tested all algorithms require a 
similar time (except RTAA* in computer game maps, for k 
>20, the required time is smaller) which decreases 
monotonically as lookahead increases. In the whole range 
of lookahead values, LRTA*(k, d) offers a very good  
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Figure 5: Experimental results on Grid35, Maze and game maps. We present solution cost and total search time for convergence. 



 

 

Cost Time Cost Time Cost Time Cost Time
2 2,997.0 5.3  286,298.0 384.8 454,010.1 812.3    9,342,177.6   12,495.8 
3 3,406.2 7.0  318,744.6 411.0 625,132.8 1,249.4 13,484,604.6  17,103.7 
4 2,838.7 6.9  346,511.8 439.7 473,503.1 1,059.6 6,213,024.9   7,692.1   
6 2,783.7 9.7  349,338.4 445.0 626,929.4 1,739.0 6,925,467.7   8,431.9   

First Trial Convergence
Grid35 Maze Grid35 Maze

Table 1: LRTS(γ=1, T=∞)  results. The lookahead depth appears in the 

leftmost column. 

(often the minimum) solution cost with a low (often the 
lowest) total search time. With high lookahead (the area 
where solutions of lowest cost are found), RTAA* and 
LRTA* search times are much higher than LRTA*(k, d) 
(up to two times for RTAA* and up to five times for 
LRTA*), except for convergence in Maze, where 
differences are small (nevertheless, LRTA*(80, 6) is the 
fastest algorithm), and  for convergence in computer game 
maps, where RTAA* is the fastest algorithm. Regarding 
parameter d, low values (d = 1, 2) achieve the shortest 
search times without a substantial decrement in solution 
cost. 
 From these results, it is clear that the crucial parameter 
is lookahead. If k can be made large enough, then all 
algorithms achieve a similar solution cost, so it is 
meaningful to select LRTA*(k, d) which offers the shortest 
search times. If k has to be small or medium, LRTA*(k, d) 
offers the best solution cost graded by parameter d, at low 
search time.  
 It is interesting to know the actual number of moves per 
step performed by the algorithms. In Figure 6, it appears 
the average number of actual moves per planning episode 
against lookahead for convergence in Grid35 (for Maze 
and computer game maps results are similar). The number 
of actual moves increases as k increases. There are two 
groups of algorithms. On one hand, RTAA* and LRTA* 
(which perform almost exactly the same number of moves) 
increase steeply with k (in fact, they have k as the upper 
limit of planned moves). On the other hand, LRTA*(k, d) 
versions increase smoothly, they are almost flat. RTAA* 
and LRTA* perform much more moves than LRTA*(k, d) 
but many of them are not good (only in this way their 
worse performance can be explained). The quality of each 
move is crucial here (a move in the wrong direction 
requires another restoring move, and moves have some 
cost). LRTA*(k, d) performs a lower number of better 
moves, offering the best performance.  
 We have compared two single-move algorithms, 
LRTA*LS(k) and LRTA*(k, 1). Their differences were 
previously indicated in the LRTA*(k, d) section (the plots 
are not including, for space reasons).  LRTA*(k, 1) obtains 
better solution costs than LRTA*LS(k), with lower search 
times. Since their basic difference is the repair strategy of 
heuristic inaccuracies (LRTA*LS(k) considers the current 
state only, while LRTA*(k, 1) considers any state of the 
local space), this plot shows that repairing heuristic 

inaccuracies of states of the local space as soon as they are 
detected, is a good strategy that brings substantial benefits 
in the long term. This results allow us to infer that  
LRTA*(k, d) improves LRTA*LS(k) for d > 1.  

 Conclusions  

 We have presented LRTA*(k, d), a new real-time 
algorithm able to plan several moves per planning step. It 
includes features already introduced in real-time search 
(A*, Dijkstra shortest path, bounded propagation). In 
addition, it implements two main ideas (i) the heuristic 
quality has to be taken into account when planning several 
moves (in the current version, it allows for planning 
several moves when no heuristic inaccuracy is detected), 
and (ii) as soon as a heuristic inaccuracy is detected, it 
must be repaired, no matter if it is located at the current 
state or not. LRTA*(k, d) is complete and converges to 
optimal paths after repeated executions on the same 
instance. Experimentally, we have seen on three 
Benchmarks that LRTA*(k, d) outperforms LRTA* 
(version of Koenig), RTAA* and LRTS (γ=1, T=∞). 
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Figure 6. Number of actual moves per planning episode. 
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