
Improving Real-Time Heuristic Search on Initially Unknown Maps

Carlos Hernández
1
 and Pedro Meseguer

2

1
Universidad Católica de la Ssma. Concepción.

Caupolicán 491, Concepción, Chile
2
Institut d’Investigació en Intel.ligència Artificial, CSIC.

Campus UAB, 08193 Bellaterra, Spain.

{chernan|pedro}@iiia.csic.es

Abstract

Real-time search methods allow an agent to perform path-
finding tasks in unknown environments. Some of these
methods may plan several actions per planning step. We
present a novel approach, where the number of planned
actions per step depends on the quality of the heuristic
values found in the lookahead. If, after inspecting the
neighborhood of a state, its heuristic value changes, only
one action is planned. When the heuristic values of all states
in the lookahead do not change, several actions are planned.
We provide experimental evidence of the benefits of this
approach, with respect to other real-time algorithms, on
existing benchmarks.

Introduction

Let us consider an agent who has to perform a path-finding
task from a start position to a goal position in an
environment that is initially unknown. The agent can only
sense the surrounding area that is in range of its sensors. In
addition, it remembers those areas that it has visited
previously. An example of this task appears in Figure 1.
This situation may happen in characters of real-time
computer games (Bulitko & Lee 2006) and control in
robotics (Koenig 2001). Off-line search methods, like A*
(Hart, Nilsson, & Raphael 1968) are not appropriate for
these tasks, because they require knowing the terrain in
advance. Incremental versions of A*, like D*Lite (Koenig
& Likhachev 2002), and real-time search methods (Korf
1990) allow an agent to solve this task, but of these two,
only real-time search methods can perform the planning
phase in a limited, short amount of time (a comparison
between incremental versions of A* and real-time heuristic
search appears in (Koenig 2004)).
 Real-time search interleaves planning and action
execution phases in an on-line manner. In the planning
phase the agent plans one or several actions, which are
performed in the action execution phase. Real-time
methods restrict the search to a small part of the state space
that is around the current state. This part is called the local

Copyright © 2007, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

space. The size of the local space is small and independent
of the size of the complete state space, so that searching in
the local space is feasible in the limited time of the
planning phase. As a result, the agent determines how to
move inside the local space and plans one or several
actions, which are performed in the next action execution
phase. The whole process iterates with new planning and
action execution phases until a goal state is reached.
 At each step, this strategy computes the beginning of the
trajectory from the current state to a goal state. Since
search is limited to a small portion of the state space, there
is no guarantee to produce an optimal global trajectory.
However, some methods guarantee that after repeated
executions on the same problem instance, the trajectory
converges to an optimal path. To prevent cycling, real-time
methods update the heuristic values associated with visited
states.
 Initially, real-time search algorithms planned one action
per planning step (Korf 1990). Nowadays, several actions
can be planned at each planning step, actions that are
sequentially performed after it (Koenig 2004), (Koenig &
Likhachev 2006), (Bulitko & Lee 2006).
 There is some debate about the relative performance of
planning one single action versus planning several actions
per planning step, with the same amount of lookahead. If a
single action is planned, the resulting action will probably
be of greater quality than if several actions were planned.
This may decrease the cost of the final solution. However,
planning one action per step often increases the overall
CPU time devoted to planning. In this paper we present an
alternative approach: to take into account the quality of the
heuristic found during lookahead. If we find any evidence
that the heuristic is not accurate, we suggest taking a
conservative approach planning one action only.

Start Start Start

Goal Goal Goal

Figure 1: An example of path-finding task: (i) the exact map

(ii) what the agent, represented by a dot, knows at the

beginning (iii) after some steps, the agents knows more about

the exact map, which is partially revealed.

Otherwise, we propose to take a more risky approach,
planning of several actions in this step. In addition, if any
inaccuracy is detected during lookahead, it is repaired even
though the inaccuracy is not located at the current state.
 The structure of the paper is as follows. First, we define
precisely the problem and summarize some of the most
popular approaches to solve it. Then, we present our
approach, showing how the quality of the heuristic has to
be taken into account when performing lookahead. We
implement these ideas in the LRTA*(k, d) algorithm, and
we present experimental results comparing this approach
and existing algorithms. Finally, we present conclusions
from this work, and address issues for further research.

Problem Definition

 The state space is defined as (X, A, c, s, G), where (X, A)
is a finite graph, c : A → [0,∞) is a cost function that
associates each arc with a positive finite cost, s ∈ X is the
start state, and G ⊂ X is a set of goal states. X is a finite set
of states, and A ⊂ X × X \ {(x, x)}, where x ∈ X, is a finite
set of arcs. Each arc (v, w) represents an action whose
execution causes the agent to move from state v to state w.
The state space is undirected: for any action (x, y) ∈ A
there exists its inverse (y, x) ∈ A with the same cost c(x, y)
= c(y, x). The cost of the path between state n and m is k(n,
m). The successors of a state x are Succ(x) = {y|(x, y) ∈ A}.
A heuristic function h : X → [0, ∞) associates to each state
x an approximation h(x) of the cost of a path from x to a
goal g where h(g) = 0 and g∈ G. The exact cost h*(x) is the
minimum cost to go from x to any goal. h is admissible iff
∀ x ∈ X, h(x) ≤ h*(x). h is consistent iff 0 ≤ h(x) ≤ c(x,w) +
h(w) for all states w ∈ Succ(x). A path {x0, x1,.., xn} with
h(xi) = h*(xi), 0 ≤ i ≤ n is optimal.
 LRTA* is a real-time search algorithm that performs a
loop of lookahead, update and action execution, until a
goal node is found. If x is the current state, it performs
lookahead at depth 1, computing y = arg minz∈Succ(x)c(x, z) +
h(z) (lookahead at greater depths can also be computed,
this is the simplest version). If h(x) < c(x, y) + h(y) (we call
it the updating condition), LRTA* updates h(x) to c(x, y) +
h(y) and moves to the state y. In a state space like the one
assumed here (finite, minimum positive costs, finite
heuristic estimates) where from every state there is a path
to a goal, it has been proved that LRTA* is complete. In
addition, if h is admissible, over repeated trials (where
each trial takes as input the heuristic values computed in
the previous trial), the heuristic estimates eventually
converge to their exact values along every optimal path
(with random tie-breaking) (Korf 1990).

Related Work

In RTA* / LRTA* (Korf 1990), the merit of a state x is f(x)
= g(x) + h(x), where g(x) is the distance from the current
state to x (in contrast with A*, where g(x) is the distance
from the initial node to x). Both algorithms were initially

presented performing one move per step, but it can be
easily modified to compute d moves per step, by expanding
d levels of the search tree rooted at the current state. RTA*
/ LRTA* updates the heuristic of the current state with the
2nd min / 1st min of f at depth d. After updating, it
executes d moves to the best state of the frontier (state with
minimum f at depth d).
 The LRTA* version of (Koenig 2004) searches the local
space around the current state using the A* algorithm. It
uses a parameter k that limits the number of states that
enter the CLOSED list. When this limit is achieved, all
nodes in CLOSED are updated using a shortest path
algorithm. After updating, the agent performs several
moves to reach the first node in the OPEN list. The
RTAA* algorithm (Koenig & Likhachev 2006) follows a
similar strategy with a different updating mechanism,
which is simpler but less informed than the one used in the
LRTA* version of (Koenig 2004).
 The LRTS algorithm (Bulitko & Lee 2006) also
computes d moves. As in the previous case, it expands d
levels of the search tree, but the updating process is
different. LRTS updates the current state with the
maximum value among the states with minimum f at each
depth between 1 and d. After updating, the agent performs
d moves to the state with minimum f at depth d.
 The LRTA*LS(k) of (Hernandez & Meseguer 2007)
plans a single action per step. If the heuristic of the current
state changes, it propagates this change in the local space
computed by a special procedure and composed up to k
states.
 In unknown environments, moves are computed using
the “free space assumption”: if a state is not in the
visibility range of the agent and there is no evidence that it
contains an obstacle, it is assumed to be feasible. When
moves are performed, if an obstacle is found in one of
these assumed feasible states, the execution stops and a
new planning phase starts.

Several Moves per Step

As mentioned above, there is some debate around the
adequacy of planning one action versus planning several
actions per planning step, with the same amount of
lookahead. Typically, single-action planning produces
trajectories of better quality (that is, minor cost). However,
the overall CPU time devoted to planning in single-action
planning is usually longer than in the other approach, since
the whole effort of lookahead produces a single move.
Thus, planning several actions is an attractive option that
has been investigated in different settings (Koenig 2004),
(Bulitko & Lee 2006).
 Planning a single action per step is a conservative
strategy. The agent has searched the local space and has
found the best trajectory in it. But, from a global
perspective, the agent is unsure whether this best trajectory
effectively brings the agent closer to a goal state, or if it
follows a wrong path moving closer to an obstacle barrier
(if the path is finally wrong this will become apparent after

a

b

c

d

e

f

g

h

i

j

k

l

m

o

p

q

r

s

t

v0

1

2

3

4

5

6

7

8

a b c d e f g h i j k l m o p q r s t v

a

b

c

d

e

f

g

h

i

j

k

l

m

o

p

q

r

s

t

v0

1

2

3

4

5

6

7

8

a b c d e f g h i j k l m o p q r s t v

a

b

c

d

e

f

g

h

i

j

k

l

m

o

p

q

r

s

t

v0

1

2

3

4

5

6

7

8

a b c d e f g h i j k l m o p q r s t v

a

b

c

d

e

f

g

h

i

j

k

l

m

o

p

q

r

s

t

v0

1

2

3

4

5

6

7

8

a b c d e f g h i j k l m o p q r s t v

a

b

c

d

e

f

g

h

i

j

k

l

m

o

p

q

r

s

t

v0

1

2

3

4

5

6

7

8

a b c d e f g h i j k l m o p q r s t v

a

b

c

d

e

f

g

h

i

j

k

l

m

o

p

q

r

s

t

v0

1

2

3

4

5

6

7

8

a b c d e f g h i j k l m o p q r s t v

a

b

c

d

e

f

g

h

i

j

k

l

m

o

p

q

r

s

t

v0

1

2

3

4

5

6

7

8

a b c d e f g h i j k l m o p q r s t v

a

b

c

d

e

f

g

h

i

j

k

l

m

o

p

q

r

s

t

v0

1

2

3

4

5

6

7

8

a b c d e f g h i j k l m o p q r s t v

a

b

c

d

e

f

g

h

i

j

k

l

m

o

p

q

r

s

t

v0

2

4

6

8

10

12

a b c d e f g h i j k l m o p q r s t v

Ag

Ag

Ag

Ag

Ag

Ag

Ag

Ag

Ag

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

some moves, when more parts of the map are revealed). In
this situation, the least commitment strategy is to plan a
single action: the best move from the current state.
 Planning several actions per step can be seen as a risky
strategy, for the same reasons. Since the local space is
small with respect to the whole state space, it is unclear if
the best trajectory inside the local space is also good at a
global level. Following the best trajectory in the local
space is risky because (i) it might not be good at a global
level, and (ii) if it is finally wrong, since it includes several
actions, it will require some effort to come back.
Otherwise, if the trajectory is good, performing several
actions in one step will bring the agent closer to the goal
than will performing a single move.
 These strategies are two extremes of a continuum of
possible planning strategies. We propose an intermediate
position between them, which consists on taking into
account the quality of the heuristic found during
lookahead. If there is any evidence that the heuristic
quality is not perfect at local level, we do not trust the
heuristic values: we take a conservative approach and plan
one action only. Otherwise, if the heuristic quality is
perfect in the local space, we trust it, taking the more risky
approach and planning for several actions.
 Specifically, we propose not to trust the heuristic when
one of the following conditions holds:
1. the final state for the agent (= the best state in the

frontier of the local space) satisfies the updating
condition,

2. there is a state in the local space that satisfies the
updating condition.

In both cases, we repair the inaccuracy of the heuristic, that
is, we generate a local space around that state, we update
the heuristic and propagate this change following the
bounded propagation method (Hernandez & Meseguer

2007). This is an important point in our approach: as soon
as one heuristic inaccuracy is detected, it is repaired and
propagated.
An example of the proposed strategy appears in Figure 2.
We present the first two planning and execution steps of an
agent in one-dimensional space, where the cost of moving
to a neighbor state is 1, states appear on the horizontal axis
and heuristic values are shown on the vertical axis. This
agent performs lookahead using A* until CLOSED has 5
states, it updates heuristic values of states in CLOSED
using a shortest path algorithm and it is able to plan up to 5
actions per step. The single-action strategy is shown on
the left (graphics a, b and c). Initially in (a), the agent is in
state l. It performs A* until CLOSED = {h, i, j, k, l}. The
shortest path algorithm on CLOSED causes no change, and
the best action is l → k (b). Then, the process repeats: A*
executes until CLOSED = {g, h, i, j, k}, the shortest path
algorithm causes the changes in heuristic values that
appear in (c) and the agent plans the best action k → l
(depending on tiebreaking, it could also be k → j). In the
center graphs (d, e and f), the planning several actions per
step strategy is shown. Initially in (d), the agent is in state
l. It performs A* until CLOSED = {h, i, j, k, l}. The
shortest path algorithm on CLOSED causes no change.
Then, it plans five actions: l → k → j → i → h → g. So the
agent moves finally to g (e) and the whole process repeats.
It performs A* until CLOSED = {g, f, h, e, i}. The shortest
path algorithm updates the heuristic values and the agent
plans three actions: g → h → i → j (f) (it could also be g
→ f → e → d). On the right hand graphs (g, h and i), we
show our proposed scheme. Initially in (g), the agent is in
state l. It performs A* until CLOSED = {h, i, j, k, l}. The
shortest path algorithm on CLOSED causes no change.
Then, we check if the final state where the agent is
planning to move (state g) satisfies the updating condition.

Figure 2: Example of moving strategies in real-time search for an agent, represented as a black dot, in unidimensional space.

States are represented in the horizontal axis, while heuristic values appear in the vertical axis. The solution state is v. local

space has 5 states, up to 5 actions can be planned per step. Left: single-move strategy. Center: several moves strategy. Right:

the strategy proposed in this paper.

Since h(g) is going to change, we select the local space (I,
F) around g with 5 states I = {g, f, h, e, i} and F = {d, j}.
We update I with the shortest path, obtaining the heuristic
values of (e). Then, we plan a single action: l → k. The
whole process repeats with the agent in k. A* stops when
CLOSED = {j, k} because h(j) satisfies the change
condition. The local space (I, F) around j with 5 states is I
= {j, k, i, l, h} and F = {g, m}. The shortest path algorithm
produces the changes reported in (i) and since a heuristic
repair has been done, a single action is planned: k → l.

LRTA*(k, d)

The strategy explained in the previous section is
implemented in the LRTA*(k, d) algorithm. It is a LRTA*-
based algorithm (Korf 1990), that propagates heuristic
updates up to k states, following the bounded propagation
idea of (Hernandez & Meseguer 2005) (Hernandez &
Meseguer 2007). In addition, it is able to plan either 1 or
up to d actions per planning step. It includes the following
features:
• Lookahead using A*. Following the idea of (Koenig

2004), the lookahead required to plan more than one
action per step is done using the well-known A*
algorithm.

• Local space selection. When the heuristic value of a
state x in the lookahead changes, the local space (I, F)
around x (where I is the set of interior states and F is
the set of frontier states) is computed using the
procedure presented in (Hernandez & Meseguer 2007).

• Propagation in local space. Once the local space (I, F)
is selected, propagation of heuristic changes into the
local space is done using the Dijkstra shortest paths
algorithm, as done by (Koenig 2004).

 LRTA*(k, d) is more that a novel combination of
existing techniques. As a new element, the algorithm
determines the number of actions to plan depending on the
quality of the heuristic found in the lookahead. If the
heuristic value of some state satisfies the updating
condition, this change is propagated up to k states and only
one action is planned only. If no heuristic value satisfies
the updating condition in the lookahead states, a sequence
of d actions are planned. These actions are executed in the
execution phase, taking into account that if an obstacle is
found, the execution stops and a new planning phase starts.
 LRTA*(k, d) appears in Figure 3. The central procedure
is LRTA*(k,d)-trial, that is executed once per trial until
solution is found (while loop, line 2). This procedure
works at follows. First, it performs lookahead from the
current state x using the A* algorithm (line 3). A*
performs lookahead until (i) it finds an state whose
heuristic value satisfies the updating condition, (ii) it finds
a state w such that g(w) = d, or (iii) it finds a solution state.
In any case, it returns the sequence of states, path, that
starting with the current state x connects with (i) the state
whose heuristic value satisfies the updating condition, (ii) a
state w such that g(w) = d, or (iii) a solution state. Observe
that said path has at least one state x, and that the only state

that might change its heuristic value is last(path). If this
state satisfies the updating condition (line 5), then this
change is propagated: the local space is determined (line 6)
and updated using the shortest path algorithm (line 7).
Then, one action is planned (line 8), executed (line 9) and
the loop iterates (line 10). If last(path) does not change its
heuristic value, then up to d actions are planned and
executed (lines 12-16).
 Function SelectLS(k, d) computes the local space (I, F)
around x that has at most k states in I. The set F surrounds I
immediately and completely. This function works as
follows. It keeps a queue Q of the state candidates to be
included in I or F. Q is initialized with the current state x

procedure LRTA*-LS(k) (X, A, c, s, G, k, d)
1 for each x ∈ X do h(x) ← h0(x);

2 repeat
3 LRTA*(k,d)-trial(X, A, c, s, G, k, d);
4 until h does not change;

procedure LRTA*-LS-trial(X, A, c, s, G, k, d)
1 x ← s;

2 while x ∉ G do

3 path ← A*(x, d, g);

4 z ← last(path);
5 if Changes?(z) then
6 (I, F) ← SelectLS(z, k);
7 Dijkstra(I, F);
8 y ← argminv∈Succ(x) [h(v) + c(x, v)];

9 execute(a ∈ A such that a = (x, y));

10 x ← y;

11 else
12 x ← extract-first (path);
13 while path ≠ ∅ k do

14 y ← extract-first (path);
15 execute(a ∈ A such that a = (x, y));

16 x ← y;

procedure SelectLS (x, k): pair of sets;
1 Q ← 〈x〉; F ← ∅; I ← ∅; cont ← 0;

2 while Q ≠ ∅ ∧ cont < k do
3 v ← extract-first(Q);
4 y ← argminw∈Succ(v) ∧ w ∉ I h(w) + c(v, w);

5 if h(v) < h(y) + c(v, y) then

6 I ←I ∪ {v};

7 cont ← cont + 1;

8 for each w ∈ Succ(v) do

9 if w ∉ I ∧ w ∉ Q then Q ← add-
last(Q,w);
10 else if I ≠ ∅ then F ←F ∪ {v};

11 if Q ≠ ∅ then F ←F ∪ Q;

12 return (I, F);

function Changes? (x): boolean;
1 y ← argminv∈Succ(x) [h(v) + c(x, v)];

2 if h(x) < h(y) + c(x, y) then return true;
3 else return false;

Figure 3: The LRTA*(k, d) algorithm.

and I and F are empty (line 1). At most k states will enter
in I, controlled by the counter cont. Then, a loop is
executed until Q contains no elements or cont is equal to k
(while loop, line 2). The first state v in Q is extracted (line
3). The state y ← arg minw∈Succ(v)∧w∉I [c(v, w) + h(w)] is
computed (line 4). If state v is going to change (line 5), it
enters I and the counter is incremented (lines 6-7). Those
successors of v which are not in I or Q enter Q by the rear
(lines 8-9). Otherwise, v enters F (line 10). When exiting
the loop, if Q still contains states, these are added to F.
 Function Changes?(x) returns true if x satisfies the
updating condition. Otherwise, it returns false (lines 2-3).
Since the heuristic always increases, LRTA(k,d)
completeness is guaranteed (Theorem 1 of (Korf 1990)
holds). If the heuristic is initially admissible, updating the
local space with the shortest path algorithm keeps
admissibility (Koenig 2004), so convergence to the optimal
paths is guaranteed in the same terms as LRTA* (Theorem
3 of (Korf 1990) holds). So LRTA(k, d) inherits the good
properties of LRTA*.
One might expect that LRTA*(k, d) collapses into
LRTA*LS(k) when d = 1. However, this is not the case.
When d = 1, these two algorithms basically differ in the
following. If the heuristic of the current state satisfies the
updating condition, LRTA*LS(k) updates it and propagates
this change in a local space constructed around the current
state. In this case, LRTA*(k, 1) behaves exactly like
LRTA*LS(k). But if the heuristic of the current state does
not change, LRTA*(k, 1) generates a local space using the
A* algorithm, and if the heuristic of some state of this local
space satisfies the updating condition, it is updated and this
change is propagated in a local space around that state.

Experimental Results

We compare the performance of LRTA*(k, d) with LRTA*
 (version of Koenig), RTAA* and LRTS(γ=1, T=∞).
Parameter k is the size of the local space, where bounded
propagation is performed; it is usually taken as the
lookahead parameter for LRTA* and RTAA*. We have
used the values k = 5, 10, 20, 40, 80. For LRTS, we have
used the following values for the lookahead depth: 2, 3, 4,
6 (corresponding to local spaces of size close to those
generated by the four last k values). Parameter d is the
upper limit on the number of planned actions per step for
LRTA*(k, d). We have used the values d = 1, 2, 4, 6.
 Benchmarks are 4-connected grids and five different
maps modeled from a role-playing game (BioWare Corp.
1998). For grids, we use Manhattan distance as the initial
heuristic. We use the following grids: Grid35. Grids of
size 301 × 301 with a 35% of obstacles placed randomly.
Here, Manhattan distance tends to provide a reasonably
good advice. Maze. Acyclic mazes of size 181 × 181
whose corridor structure was generated with depth-first
search. Here, Manhattan distance could be very
misleading, because there are many blocking walls. The
number of states in each computer game map is 2,765,
7,637, 13,765, 14,098, and 16,142. The maps are 8-

connected worlds. We use the maximum of the absolute
differences of the x and y coordinates of two cells as the
initial heuristic. In all benchmarks, the starting and goal
states are chosen randomly assuring that there is a path
from the start to the goal. All actions have cost 1. The
visibility radius of the agent is 1. Results consider the first
trial and the convergence to optimal trajectories. We
present the solution cost (= number of actions performed to
reach the goal) and total search time (until the agent
reaches the goal) in milliseconds, plotted against k,
averaged over 1,500 different instances in grids, and over
10,000 instances in maps (2,000 instances for each map).
 LRTA*, RTAA* and LRTA*(k, d) results appear in
Figure 4, while LRTS(γ=1, T=∞) results appear in Table
1.They are not included in Figure 4 for clarity purposes.
Solution costs are always worse than those provided by
other algorithms and in some cases their inclusion caused
to change the plot scale. From this point on, we limit the
discussion to LRTA*, RTAA* and LRTA*(k, d).
 Results for first-trial on Grid35 appear in the first row
of Figure 4. We observe that the solution cost decreases
monotonically as k increases, and for LRTA*(k, d) it also
decreases monotonically as d increases. LRTA*(k, d)
versions obtain the best results for low lookahead, and all
algorithms have a very similar cost for high lookahead (for
k = 80 LRTA* obtains the minimum cost, followed closely
by RTAA* and LRTA*(80,6)). Considering total search
time, RTAA* and LRTA* increase monotonically with k,
something which does not occur for LRTA*(k, d). This
algorithm (especially d = 1, 2 although the four d values
have a similar behavior) starts at the same level as the
other algorithms, decreases slightly with k and after k = 20,
increases very slightly. Globally, it remains fairly stable.
For medium and high lookahead, its total search time is
much shorter than RTAA* and LRTA*. So, in the whole
lookahead range, LRTA*(k, d) offers a very good
performance in solution cost with a low (often the lowest)
total search time.
 Results for the first-trial on Maze appear in the second
row of Figure 4. Regarding the solution cost, the pattern is
similar to the observed in Grid35: it decreases
monotonically as k increases, LRTA*(k, d) versions obtain
lower costs than RTAA* and LRTA* (except for k = 5 and
d = 1) and their costs decrease as d increases. All
algorithms have a similar cost with k = 80 (LRTA*(80, 2)
reaches the minimum cost, followed by LRTA*(80, 4) and
LRTA*(80, 1)). Regarding total search time, the pattern is
different from Grid35. All algorithms (except LRTA(5, 1))
require a similar time for k = 5. Then, the time required by
all algorithms decreases as k increases until some k value
where the time increases again. The interesting point is that
LRTA* and RTAA* start increasing for a relatively low
lookahead (k = 10, 20) while LRTA(k, d) starts increasing
for larger lookahead (k = 40). In addition, this increment is
very low. As a result, all versions of LRTA*(k, d) offer the
shortest search times for medium to high lookahead.
Again, in the whole range of lookahead, LRTA*(k, d)

Figure 4: Experimental results on Grid35, Maze and game maps. We present solution cost and total search time for the first trial.

 G35 First Trial

-

5

10

15

20

25

30

5 10 20 40 80

k

T
im

e

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

G35 First Trial

-

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

5 10 20 40 80

k

S
te

p
s

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

Maze First Trial

-

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

5 10 20 40 80

k

S
te

ps

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

Maze First Trial

-

50

100

150

200

250

300

350

400

5 10 20 40 80

k

T
im

e

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

Computer Game Maps First Trial

-

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

5 10 20 40 80

k

S
te

p
s

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

Computer Game Maps First Trial

-

10

20

30

40

50

60

70

5 10 20 40 80

k

T
im

e

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

offers a very good performance in solution cost with a low
(often the lowest) total search time.
 Results for the first-trial on computer game maps appear
in the third row of Figure 4. Regarding the solution cost
and total search time, the pattern is similar to the observed
in Grids: the cost decreases monotonically as k increases
and LRTA*(k, d) versions obtain lower costs than RTAA*
and LRTA*. The total search time required by all
algorithms decreases as k increases until some k value
where the time increases again. LRTA* starts increasing
for relatively low lookahead (k = 10) while RTAA* and
LRTA*(k, d) starts increasing for intermediate values of
lookahead (k = 40).

Results for convergence on Grid35 appear in the first
row of Figure 5. Solution cost results are similar to the first
trial on the same benchmark. Regarding total search time,
the decreasing-increasing curve observed in the Maze
benchmark appears for LRTA* (inflexion point at k = 20)
and RTAA* (inflexion point at k = 40). Interestingly,
LRTA*(k, d) versions keep decreasing. So here LRTA*(k,
d) obtains the minimum cost and the shortest search time at
the maximum lookahead tested (k = 80). Differences
among d values are small.
 Results for convergence on Maze appear in the second
row of Figure 5. For the solution cost, the pattern already
observed in the previous experiments is repeated here.

Regarding total search time, all algorithms show a similar
behavior: for each k value, all have similar time
requirements, which decrease monotonically as k increases.
Therefore, for low lookahead LRTA*(k, d) offers the
minimum cost, while there is little difference for high
lookahead.
Results for convergence on computer game maps appear in
the third row of Figure 5. For the solution cost, the pattern
already observed in the previous experiments is repeated
here. Regarding total search time, the decreasing-
increasing curve observed in the Maze benchmark appears
for LRTA* (inflexion point at k = 40). Interestingly,
LRTA*(k, d) versions and RTAA* keep decreasing.

Summarizing, there is a common pattern in solution
cost: all algorithms improve as lookahead increases, for

low and medium lookahead LRTA*(k, d) versions offer the
best cost, while for high lookahead all algorithm achieve a
similar cost. Regarding the total search time, we observe
some differences. Considering four experiments (first trial
in Grid35, Maze and computer game maps, convergence in
Grid35) all algorithms require a similar time for low
lookahead. This time increases drastically for RTAA*
(except in computer game maps) and LRTA* for high
lookahead, while it remains much lower for LRTA*(k, d).
Regarding convergence in Maze and computer game maps,
for all values of lookahead tested all algorithms require a
similar time (except RTAA* in computer game maps, for k
>20, the required time is smaller) which decreases
monotonically as lookahead increases. In the whole range
of lookahead values, LRTA*(k, d) offers a very good

 G35 Convergence

-

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

5 10 20 40 80

k

S
te

p
s

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

G35 Convergence

-

100

200

300

400

500

600

5 10 20 40 80

k

T
im

e

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

Maze Convergence

-

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

5 10 20 40 80

k

S
te

p
s

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

Maze Convergence

-

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

5 10 20 40 80

k

T
im

e

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

Computer Game Maps Convergence

-

20,000

40,000

60,000

80,000

100,000

120,000

5 10 20 40 80

k

S
te

p
s

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

Computer Game Maps Convergence

-

50

100

150

200

250

300

350

400

5 10 20 40 80

k

T
im

e

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

Figure 5: Experimental results on Grid35, Maze and game maps. We present solution cost and total search time for convergence.

Cost Time Cost Time Cost Time Cost Time
2 2,997.0 5.3 286,298.0 384.8 454,010.1 812.3 9,342,177.6 12,495.8
3 3,406.2 7.0 318,744.6 411.0 625,132.8 1,249.4 13,484,604.6 17,103.7
4 2,838.7 6.9 346,511.8 439.7 473,503.1 1,059.6 6,213,024.9 7,692.1
6 2,783.7 9.7 349,338.4 445.0 626,929.4 1,739.0 6,925,467.7 8,431.9

First Trial Convergence
Grid35 Maze Grid35 Maze

Table 1: LRTS(γ=1, T=∞) results. The lookahead depth appears in the

leftmost column.

(often the minimum) solution cost with a low (often the
lowest) total search time. With high lookahead (the area
where solutions of lowest cost are found), RTAA* and
LRTA* search times are much higher than LRTA*(k, d)
(up to two times for RTAA* and up to five times for
LRTA*), except for convergence in Maze, where
differences are small (nevertheless, LRTA*(80, 6) is the
fastest algorithm), and for convergence in computer game
maps, where RTAA* is the fastest algorithm. Regarding
parameter d, low values (d = 1, 2) achieve the shortest
search times without a substantial decrement in solution
cost.
 From these results, it is clear that the crucial parameter
is lookahead. If k can be made large enough, then all
algorithms achieve a similar solution cost, so it is
meaningful to select LRTA*(k, d) which offers the shortest
search times. If k has to be small or medium, LRTA*(k, d)
offers the best solution cost graded by parameter d, at low
search time.
 It is interesting to know the actual number of moves per
step performed by the algorithms. In Figure 6, it appears
the average number of actual moves per planning episode
against lookahead for convergence in Grid35 (for Maze
and computer game maps results are similar). The number
of actual moves increases as k increases. There are two
groups of algorithms. On one hand, RTAA* and LRTA*
(which perform almost exactly the same number of moves)
increase steeply with k (in fact, they have k as the upper
limit of planned moves). On the other hand, LRTA*(k, d)
versions increase smoothly, they are almost flat. RTAA*
and LRTA* perform much more moves than LRTA*(k, d)
but many of them are not good (only in this way their
worse performance can be explained). The quality of each
move is crucial here (a move in the wrong direction
requires another restoring move, and moves have some
cost). LRTA*(k, d) performs a lower number of better
moves, offering the best performance.
 We have compared two single-move algorithms,
LRTA*LS(k) and LRTA*(k, 1). Their differences were
previously indicated in the LRTA*(k, d) section (the plots
are not including, for space reasons). LRTA*(k, 1) obtains
better solution costs than LRTA*LS(k), with lower search
times. Since their basic difference is the repair strategy of
heuristic inaccuracies (LRTA*LS(k) considers the current
state only, while LRTA*(k, 1) considers any state of the
local space), this plot shows that repairing heuristic

inaccuracies of states of the local space as soon as they are
detected, is a good strategy that brings substantial benefits
in the long term. This results allow us to infer that
LRTA*(k, d) improves LRTA*LS(k) for d > 1.

 Conclusions

 We have presented LRTA*(k, d), a new real-time
algorithm able to plan several moves per planning step. It
includes features already introduced in real-time search
(A*, Dijkstra shortest path, bounded propagation). In
addition, it implements two main ideas (i) the heuristic
quality has to be taken into account when planning several
moves (in the current version, it allows for planning
several moves when no heuristic inaccuracy is detected),
and (ii) as soon as a heuristic inaccuracy is detected, it
must be repaired, no matter if it is located at the current
state or not. LRTA*(k, d) is complete and converges to
optimal paths after repeated executions on the same
instance. Experimentally, we have seen on three
Benchmarks that LRTA*(k, d) outperforms LRTA*
(version of Koenig), RTAA* and LRTS (γ=1, T=∞).

Acknowledgments

 We would like to thank Vadim Bulitko from the
University of Alberta for his useful comments.

References

BioWare Corp. 1998. Baldur's Gate. Interplay.
http://www.bioware.com/bgate/
Bulitko, V., and Lee, G. 2006. Learning in real time
search: a unifying framework. JAIR 25:119–157.
Hart, P., Nilsson, N., and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths.
IEEE Trans. on Systems Science and Cybernetics 2:100–107.
Hernandez, C., and Meseguer, P. 2005. Lrta*(k). In
Proceedings of the 19th IJCAI, 1238–1243.
Hernandez, C., and Meseguer, P. 2007. Improving lrta*(k).
In Proceedings of the 20th IJCAI, 2312–2317.
Koenig, S., and Likhachev, M. 2002. D*lite. In
Proceedings of the AAAI, 476–483.
Koenig, S., and Likhachev, M. 2006. Real-time adaptive
a*. In Proceedings of the AAMAS, 281–288.
Koenig, S. 2001. Agent-centered search. Artificial
Intelligence Magazine 22(4):109–131.
Koenig, S. 2004. A comparison of fast search methods for
real-time situated agents. In Proceedings of the AAMAS,
864–871.
Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42(2-3):189–211.

Figure 6. Number of actual moves per planning episode.

G35 Convergence

-

2

4

6

8

10

12

5 10 20 40 80

k

S
te

p
s

p
er

 P
la

n
ni

n
g

 E
p

is
o

de

LRTA*(k, d=1) LRTA*(k, d=2) LRTA*(k, d=4) LRTA*(k, d=6) RTAA* LRTA*

